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Abstract

We investigate the possibility of existence of a symmetric potentialHABA′B′ = H(AB)(A′B′) for
a symmetric (3,1)-spinorLABCA′ , e.g., a Lanczos potential of the Weyl spinor, as defined by the
equationLABCA′ = ∇(A

B′
HBC)A′B′ . We prove that in all Einstein space–times such a symmetric

potentialHABA′B′ exists. Potentials of this type have been found earlier in investigations of some
very special spinors in restricted classes of space–times. A tensor version of this result is also
given. We apply similar ideas and results by Illge to Maxwell’s equations in a curved space–time.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

More than 30 years ago Lanczos [20] proposed a first order potential for the Weyl tensor.
However, in 1983 Bampi and Caviglia [7] showed that Lanczos’ original proof was flawed
and supplied a rigorous but complicated proof of local existence for four-dimensional an-
alytic spaces, independent of signature. Illge [18] has supplied a more conventional proof
of existence (by means of a Cauchy problem) in spinor notation that, in its full general-
ity, does not seem to generalize in an obvious manner, to arbitrary signature. Moreover, it
should be emphasized that Illge’s work has highlighted the simple and natural structure of
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the Lanczos potentialin spinor notation, and makes it clear that for work in space–times
(four-dimensionalC∞ manifolds with Lorentz signature) the spinor formalism is much
simpler than the tensor formalism. It should also be noted that in Lorentz signature the
Lanczos potential satisfies a wave equation, and the well-posedness of the corresponding
Cauchy problem enabled Illge to remove the assumption about analyticity in his proof.

It is important to note that the two existence proofs supplied by Bampi and Caviglia [7],
and by Illge [18], respectively, do not directly concern the Weyl tensor/spinorCabcd/ΨABCD,
but are valid foranytensor/spinorWabcd/WABCD having the same algebraic symmetries as
the Weyl tensor/spinor. Furthermore, Illge’s work also discusses the existence of potentials
for completely symmetric spinors with an arbitrary number of primed and unprimed indices;
in general these potentials are not symmetric.

For a recent, very simple and direct proof of the existence of the Lanczos potential (see
[6]). This proof introduces an asymmetric ‘superpotential’TABCD = T(ABC)D such that
LABCA′ = ∇A′DTABCD.

The results in this paper for four-dimensional space–times are given following the con-
ventions of [25] in spinor notation, where the results are natural and the calculations com-
paratively simple; however, we also give the results in tensor notation for four-dimensional
space–times. We remark that in general the Lanczos potential does not exist in dimensions
higher than 4 [14].

Note that a spinorSA1···AnB ′
1···B ′

m
having both primed and unprimed indices is said to be

(completely) symmetricif it is symmetric over both types of indices, i.e.,

SA1···AnB ′
1···B ′

m
= S(A1···An)(B ′

1···B ′
m).

In Section 2, we state Illge’s theorem for the existence and uniqueness of a symmetric
spinor potentialLA1···AnA′ for the symmetric spinorWAA1···An . We also state the analogous
result for a spinor potentialLA1···AnB ′

1···B ′
mA′(= L(A1···An)(B ′

1···B ′
m)A′ ) for the completely

symmetric spinorWAA1···AnB ′
1···B ′

m
. In addition, we quote the corresponding Lanczos wave

equation forLABCA′ andLA1···AnB ′
1···B ′

mA′ showing how in the latter case analgebraiccon-
straint arises in general, if we try to demand acompletely symmetricLA1···AnB ′

1···B ′
mA′ .

As noted above, Illge has shown the existence of (asymmetric) potentials for completely
symmetric spinors with an arbitrary number of primed and unprimed indices. Thus, a Lanc-
zos potentialLABCA′ of some symmetric spinorWABCD itself has spinor potentials. One
example is the spinorTABCD referred to above, but there are reasons why we are more
interested in having asymmetricpotential of the typeHABA′B ′ = H(AB)(A′B ′) (see, e.g.,
[1,3,5,9,27,28]). Although such a potential does not exist in all space–times, we demon-
strate in Section 3 that it does exist in all Einstein space–times. In order to obtain a unique
solution to the problem, we will supplement the defining equation forHABA′B ′ with cer-
tain other conditions and use a technique which is similar in structure to Illge’s proof for
the existence ofLABCA′ . As a result our proof of this result will lack the simplicity of the
existence proof forLABCA′ given in [6]. A tensor version is also given.

In Section 4, we will look in more detail at the important application to electromagnetism
in curved space. We do this in order to see how the results in the first sections relate to
more familiar results on potentials such as Poincare’s lemma, and what simplifications can
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be achieved due to the simpler index structure of the electromagnetic spinor, and due to
Maxwell’s equations.

In Section 5, we discuss how the results in this paper links up with existing results and
applications.

2. Preliminaries

Let M be a space–time (i.e., a real,C∞, four-dimensional manifold with a metric of
signature(+ − − −)). For simplicity, we will restrict ourselves to tensor- and spinor fields
of classC∞, but note that the results given could be generalized to tensor- and spinor fields
of lesser regularity by using theorems on hyperbolic systems where the fields are only
assumed to be in some Sobolev space, instead of the theorems used here. For definitions
of the Levi-Civita connection, the curvature spinors, etc., we will follow the conventions in
[25]. Also note that all indices (both tensor- and spinor-indices) occurring in this paper are
abstract indices [25].

Illge [18] has shown that given any symmetric spinorsWABCD = W(ABCD), FBC = F(BC)

there exists (locally) a symmetric spinorLABCA′ = L(ABC)A′ such that

WABCD = 2∇(A
A′

LBCD)A′ , FBC = ∇AA′
LABCA′ .

Such a spinorLABCA′ is said to be a Lanczos (spinor) potential ofWABCD. The spinorFBC

is called the differential gauge ofLABCA′ . WhenFBC = 0, the Lanczos potential is said to
be in Lanczos differential gauge. Of particular interest is the caseWABCD = ΨABCD, i.e.,
Lanczos potentials of the Weyl curvature spinor. In this case the first of the above equations
is called the Weyl–Lanczos equation. These Lanczos potentials are spinor analogues of the
Lanczostensorpotentials, originally investigated in [20]. For an extensive account of the
Lanczos potential and its properties see [1,13].

One of the most remarkable results concerning Lanczos potentials is Illge’s wave equation
[18]. SupposeLABCA′ is a Lanczos potential ofWABCD in the differential gaugeFBC. Then,
LABCA′ satisfies the following linear wave equation:

hLABCA′ + 6ΦA′B ′(A
DLBC)D

B ′ + 6ΛLABCA′ + ∇D
A′WABCD − 3

2∇A′(AFBC) = 0.

Now, if WABCD is actually the Weyl spinorΨABCD, if the space–time is vacuum and ifLABCA′

is in Lanczos differential gauge, we obtain the remarkably simple equation

hLABCA′ = 0.

By lettingLabc be the tensor equivalent of the hermitian spinor

Labc = LABCC′εA′B ′ + L̄A′B ′C′CεAB,

the tensorLabchas the symmetriesLabc = L[ab]c,L[abc] = 0,Lab
b = 0. This last symmetry

was originally thought of as a gauge condition called the Lanczos algebraic gauge; however,
because of the spinor correspondence we choose to include this symmetry in the definition
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of the Lanczos potential. As we shall see below, it also gives us a comparatively simple
form of the tensor equation corresponding to the Weyl–Lanczos equation.

We can now define a Lanczostensorpotential of the Weyl tensorCabcd, or indeed of
any tensorWabcd having the same algebraic symmetries as the Weyl tensor, by translating
the Weyl–Lanczos equation into tensor formalism. We obtain the Weyl–Lanczostensor
equation which reads

Wabcd = Lab[c;d] + Lcd[a;b] − ∗L∗
ab[c;d] − ∗L∗

cd[a;b], (1)

whereWabcd has the same algebraic symmetries as the Weyl tensor. This is the original
definition of the Lanczos potential given in [20]. By differentiating the Weyl–Lanczos
tensor equation and using the Bianchi identities and the commutators we obtain a wave
equation, similar to Illge’s spinor wave equation. It is

hLabc − 2Ldefgc[aCb]def + 2L[a
deCb]edc+ 1

2Lde
cCdeab= 0

in vacuum, Lanczos differential gauge andWabcd = Cabcd. It is interesting to note that it is
much more difficult to calculate this tensor wave equation than the corresponding spinor one,
and it also appears at first to have a much more complicated structure as it seems to include
an expression involving products of the Weyl tensor and the Lanczos potential explicitly.
However, it was shown in [12], by some very simple manipulations using Hodge duals,
that this expression vanishes identically in four, and only in four dimensions, irrespective
of metric signature, so the tensor wave equation simplifies to

hLabc = 0

in agreement with the spinor equation. The same result can also be proved using a dimen-
sionally dependent identity by Lovelock [22]. This technique is illustrated in [4,17]. An
alternative proof, valid only in Lorentz signature is given in [11], using spinor techniques.

An interesting result regarding this wave equation was proved by Edgar and Höglund
[13]. They showed that in a vacuum space–time of ‘sufficient generality’ (see [13] or [8])
a spinorLABCA′ in Lanczos differential gauge∇AA′

LABCA′ = 0 is a constant multiple of a
Lanczos potential of the Weyl spinor if and only ifhLABCA′ = 0. Hence, in this particular
case, Illge’s wave equation is actually a sufficient condition forLABCA′ to be a constant
multiple of a Lanczos potential of the Weyl spinor.

Illge’s theorem in [18] is actually more general than we have quoted above. Illge proves
the existence of a potential similar to the one mentioned above, for the case when the
symmetric spinorW has an arbitrary number of indices. For easy reference we include the
complete theorem of Illge in this section, together with a generalization also mentioned in
[18].

Theorem 2.1. Let symmetric spinor fieldsWAA1···An, FA2···An, a space-like past-compact

hypersurfaceΣ of classC∞ and a symmetric spinor field
◦
LA1···AnA′ defined only onΣ 1

1 From now on, a circle above a spinor field, i.e.,
◦
L will always mean that the spinor field is defined only onΣ .
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be given. Then there exists a neighbourhood U(called a causal neighbourhood[15]) of Σ
in which the equations

WAA1···An = 2∇(A
A′

LA1···An)A′ , FA2···An = ∇A1A
′
LA1A2···AnA′

have a unique symmetric solutionLA1···AnA′ satisfyingL|Σ = ◦
L.

We note that a spinorWABCD in general has many Lanczos potentials in each differential
gaugeFBC.

Following Illge [18], we attempt to generalize this theorem to symmetric spinors with
both primed and unprimed indices. LetWAA1···AnB ′

1···B ′
m

andFA2···AnB ′
1···B ′

m
be completely

symmetric spinors. We then look for a spinorLA1···AnB ′
1···B ′

mA′ so that

WAA1···AnB ′
1···B ′

m
= 2∇(A

A′
LA1···An)B ′

1···B ′
mA′ ,

FA2···AnB ′
1···B ′

m
= ∇A1A

′
LA1A2···AnB ′

1···B ′
mA′ .

From this equation, we see that it is natural to require thatL has the symmetry

LA1···AnB ′
1···B ′

mA′ = L(A1···An)(B ′
1···B ′

m)A′ .

By combining the above two equations into one, differentiating and using the commutators,
we arrive at a wave equation analogous to Illge’s wave equation

0= hLA1···AnB ′
1···B ′

mA′ − 2nΦB ′A′D(A1L
D

A2···An)B ′
1···B ′

m

B ′

−2mΨ̄A′B ′C′(B ′
1
L|A1···An|B ′

2···B ′
m)

B ′C′ + 2Λ(3LA1···AnB ′
1···B ′

mA′

−m(LA1···AnA′(B ′
1···B ′

m) + εA′(B ′
1
L|A1···An|B ′

2···B ′
m)C′C

′
))

+∇A′AWAA1···AnB ′
1···B ′

m
− 2n

n + 1
∇A′(A1FA2···An)B ′

1···B ′
m
. (2)

Note that the corresponding Eq. (8) given in [18] contains a few misprints. Suppose, we
first try to find a completely symmetric solution of this equation, i.e.,

LA1···AnB ′
1···B ′

mA′ = L(A1···An)(B ′
1···B ′

mA′).

Multiplying (2) by εA′B ′
1 gives

0= nΦA′B ′D(A1L
D

A2···An)B ′
2···B ′

m

A′B ′ + (m − 1)Ψ̄A′B ′C′(B ′
2
L|A1···An|B ′

3···B ′
m)

A′B ′C′

+1
2∇AA′

WAA1···AnA′B ′
2···B ′

m
− n

n + 1
∇(A1

A′
FA2···An)A′B ′

2···B ′
m
. (3)

Thus, we obtain not only a wave equation forL, but also analgebraic constrainton the
potentialL. Therefore we cannot, in general, find a completely symmetric potential for a
spinor field with both primed and unprimed indices. However, we immediately see some
cases where these constraints are automatically satisfied, e.g., whenn = 0,m = 1 providing
∇AA′

WAA′ = 0. Illge [18] proves that in this case a symmetric potential exists.
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Also, if m = 1 andΦABA′B ′ = 0, then the potential vanishes from this constraint equation,
and we are left with just an equation for the differential gaugeF . If this equation can be
solved, we might expect to find a potential forW . These ideas will be explored in detail in
Section 3. On the other hand, ifn = 0 andΨABCD = 0, we also see that the above equation
is no longer a constraint on the potential itself.

So, in particular, we see that forWAA1···AnA′ the possibility of having a potential of type
LA1···AnA′B ′ = L(A1···An)(A′B ′) in space–times with vanishing Ricci spinor, is not ruled out.
The possibility ofWAB′

1···B ′
m

having a symmetric potentialLB ′
1···B ′

mA′ in conformally flat
space–times is not ruled out either.

Finally, we note that if we do not require complete symmetry ofL, then no constraints
occur, and Illge has proven the following generalization of Theorem 2.1 (see [18]).

Theorem 2.2. Let symmetric spinor fieldsWAA1···AnB ′
1···B ′

m
, FA2···AnB ′

1···B ′
m

, a space-like
past-compact hypersurfaceΣ of classC∞ and a spinor field

◦
LA1···AnB ′

1···B ′
mA′ = ◦

L(A1···An)(B ′
1···B ′

m)A′

defined only onΣ be given. Then, there exists a neighbourhood U(called a causal neigh-
bourhood[15]) of Σ in which the equations

WAA1···AnB ′
1···B ′

m
= 2∇(A

A′
LA1···An)B ′

1···B ′
mA′ ,

FA2···AnB ′
1···B ′

m
= ∇A1A

′
LA1A2···AnB ′

1···B ′
mA′

have a unique solutionLA1···AnB ′
1···B ′

mA′ = L(A1···An)(B ′
1···B ′

m)A′ that satisfiesL|Σ = ◦
L.

In summary, Illge has shown that any symmetric spinor (in fact the symmetry condition
is not necessary, although these are usually the spinors we are interested in) has a potential
(actually two different potentials using Theorem 2.2 and the complex conjugate of Theorem
2.2); but it is only for symmetric spinors which are restricted to only one type of index where
we canalwaysobtain asymmetricpotential.

3. Potentials for symmetric (3,1)-spinors in Einstein space–times

3.1. Introduction

In some special cases [1,3,5,9,27] there has been found a completely symmetric spinor
HABA′B ′ such that the spinor

LABCA′ = ∇(A
B ′

HBC)A′B ′

is a Lanczos potential of the Weyl spinor. In this section, we will prove that such a spinor
HABA′B ′ exists in all Einstein space–times, i.e., space–times such that the Ricci spinor
ΦABA′B ′ = 0. In fact, we will prove that in such space–timesanysymmetric spinorLABCA′

can be written as

LABCA′ = ∇(A
B ′

HBC)A′B ′
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for some spinorHABA′B ′ = H(AB)(A′B ′) and that for each choice ofLABCA′ there exists many
such spinorsHABA′B ′ . We emphasize that this result doesnot follow from Theorem 2.2
because here we are requiringcompletesymmetry ofHABA′B ′ .

3.2. A preliminary result

First we need a preliminary lemma, which is of interest in its own right.

Lemma 3.1. For any symmetric spinor fieldϕAB, time-like or space-like vector fieldnAA′

and complex function f there exists a unique complex vector fieldζAA′
such thatϕBC =

n(B
A′

ζC)A′ and in additionnAA′
ζAA′ = f .

Proof. By rescaling, it suffices to assume thatnAA′
is a unit time-like or space-like vector.

We start by proving uniqueness; suppose thatϕBC = n(B
A′

ζC)A′ andnAA′
ζAA′ = f . For the

case whennAA′
is time-like we obtain

2ϕA
BnBA′ + fnAA′ = nA

B ′
ζB
B ′nBA′ + nBB′

ζAB′nBA′ + fnAA′

= 1
2ζAA′ + nAA′nB

B ′
ζB ′B + εBAnCA′nCB′

ζB ′B + fnAA′ = ζAA′ , (4)

where we have used thatnB ′CnCA′ = 1
2εA′B ′ . In the space-like case, the same calculations

give

2ϕA
BnBA′ − fnAA′ = ζAA′ .

This proves the uniqueness part so now we need only verify that the above candidate for
ζAA′ actually satisfies the conclusion of the lemma. As before we start with the time-like
case

nAA′
(2ϕA

BnBA′ + fnAA′) = 2ϕA
B · 1

2εB
A + f = f

and

n(B
A′

ζC)A′ = 2n(B
A′

ϕC)
DnDA′ + fn(B

A′
nC)A′ = εD(BϕC)

D = ϕBC.

This proves the lemma in the time-like case. The space-like case is proved in exactly the
same way. �

3.3. Construction of the spinor potential

LetM be an Einstein space–time, i.e.,ΦABA′B ′ = 0 and letLABCA′ be a symmetric spinor
field on M. Our objective is to show that locally there exists a spinor fieldHABA′B ′ =
H(AB)(A′B ′) such that

LABCA′ = ∇(A
B ′

HBC)A′B ′ . (5)

We also wish to examine the gauge freedom in the potentialHABA′B ′ .



280 F. Andersson, S.B. Edgar / Journal of Geometry and Physics 37 (2001) 273–290

Our strategy for proving the existence ofHABA′B ′ will be to start by deriving a wave
equation forHABA′B ′ , along with some constraint equations. Then, we use a theorem from
[15] to show that these equations have a solution; finally, we prove that this solution also
solves Eq. (5).

We begin by assuming thatHABA′B ′ = H(AB)(A′B ′) satisfies

∇(A
B ′

HBC)A′B ′ = LABCA′ , ∇AA′
HABA′B ′ = ζBB′ , (6)

whereζBB′ is a given spinor field (complex 1-form). Note that

∇A
B ′

HBCA′B ′ = ∇(A
B ′

HBC)A′B ′ − 2
3εA(B∇DD′

HC)DA′D′ ,

so (6) is equivalent to

∇A
B ′

HBCA′B ′ = LABCA′ − 2
3εA(BζC)A′ . (7)

Now, letΣ be aC∞ space-like past-compact hypersurface with future-directed unit normal
na = nAA′

. Let ∇n = na∇a = nAA′∇AA′ be the normal derivative with respect toΣ and let
∇̃AA′ = ∇AA′ − nAA′∇n. We remark that onΣ , ∇̃AA′T , whereT is an arbitrary spinor field,
depends only on the restriction ofT toΣ . This is most easily shown using Gaussian normal
coordinates [29]. We will therefore, by some abuse of notation, allow∇̃AA′ to act on spinor
fields defined only onΣ .

Put
◦
HABA′B ′ = HABA′B ′ |Σ . Since (7) must be satisfied also onΣ , we obtain

nA
B ′∇nHBCA′B ′ |Σ = −(∇̃A

B ′
HBCA′B ′ − LABCA′ + 2

3εA(BζC)A′)|Σ.

As before, we have thatnAC′
nA

B ′ = 1
2εB ′C′

. Thus, multiplying the previous equation by

nAC′
gives us an explicit expression for the normal derivative ofHABA′B ′ .

∇nHBCA′C
′ |Σ = 2nAC′

(∇̃A
B ′

HBCA′B ′ − LABCA′ + 2
3εA(BζC)A′)|Σ. (8)

Note that sincẽ∇A
B ′

HBCA′B ′ depends only on the restriction ofH to Σ , we can replace
H with

◦
H in the RHS. If we lower the indexC′ then the LHS is symmetric over(A′C′).

Hence, the above equation is equivalent to the following initial value constraints:

∇nHBCA′C′ |Σ = 2nA
(C′(∇̃|AB ′ ◦

HBC|A′)B ′ − L|ABC|A′) + 2
3ε|A(B

◦
ζC)|A′))|Σ,

0 = nAA′
(∇̃A

B ′ ◦
HBCA′B ′ − LABCA′ + 2

3εA(B

◦
ζC)A′)|Σ, (9)

where we have put
◦
ζAA′ = ζAA′ |Σ .

Next, we differentiate the LHS of (7)

∇A
C′∇A

B ′
HBCA′B ′ = εB ′D′∇A

(C′∇D′)AHBCA′B ′ + 1
2∇A

E′∇A
E′

HBCA′C′

= −1
2hHBCA′C′ + Ψ̄B ′E′A′C′HBC

E′B ′ − 4ΛHBCA′C′ , (10)

where we have used thatΦABA′B ′ = 0 along with the symmetry ofHABA′B ′ . Thus,HABA′B ′
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satisfies the following wave equation:

hHBCA′C′ − 2Ψ̄B ′E′A′C′HBC
E′B ′ + 8ΛHBCA′C′

= −2∇A
C′LABCA′ + 4

3∇C′(BζC)A′ . (11)

Note that this equation is actually a special case of Eq. (2).
Since,HBCA′C′ is symmetric over(A′C′), it follows that (11) is equivalent to

hHBCA′C′ − 2Ψ̄B ′E′A′C′HBC
E′B ′ + 8ΛHBCA′C′

= −2∇A
(C′L|ABC|A′) + 2

3∇C′(BζC)A′ + 2
3∇A′(BζC)C′ ,

0 = −∇AA′
LABCA′ + 2

3∇(B
A′

ζC)A′ . (12)

The second of these equations is actually Eq. (3).
After these preliminary considerations, we are ready to prove our main result.

Theorem 3.2. Suppose M is an Einstein space–time(ΦABA′B ′ = 0) and thatΣ ⊂ M is
a C∞ space-like past-compact hypersurface with future directed unit normalnAA′

. Let a
spinor fieldLABCA′ = L(ABC)A′ and a complex function g be given. Furthermore, let a

spinor field
◦
HABA′B ′ = ◦

H(AB)(A′B ′) and a complex function
◦
f , both defined only onΣ , be

given. Then, there exists a neighbourhood U ofΣ such that there exists a unique spinor
fieldHABA′B ′ = H(AB)(A′B ′) satisfying the equations

∇(A
B ′

HBC)A′B ′ = LABCA′ , ∇AA′∇BB′
HABA′B ′ = g,

HABA′B ′ |Σ = ◦
HABA′B ′ , nAA′∇BB′

HABA′B ′ |Σ = ◦
f , (13)

on all of U.

Proof. An outline of the existence part of the proof is as follows. We start by solving the

second of Eq. (9) for
◦
ζAA′ so thatnAA′ ◦

ζAA′ = ◦
f . Then, we evolve this initial data using the

second equation of (12) in such a way that∇AA′
ζAA′ = g. Next, we calculate the normal

derivative ofHABA′B ′ using the first equation of (9) and use the so obtained Cauchy data
for HABA′B ′ to solve the first equation of (12) forHABA′B ′ . It can then be verified that this
spinor field satisfies all the conditions of the theorem.

Define the symmetric spinor
◦
ϕBC = 3

2nAA′
(LABCA′ |Σ − ∇̃A

B ′ ◦
HBCA′B ′).

By Lemma 3.1, there exists a unique spinor
◦
ζAA′ such that

nAA′ ◦
ζAA′ = ◦

f ,

and such that the second of Eq. (9) is satisfied, i.e.,
◦
ϕBC = n(B

A′ ◦
ζC)A′ . (14)

Our next task will be to solve forζAA′ . We want to findζAA′ , so that the following three
conditions are satisfied:

∇(B
A′

ζC)A′ = 3
2∇AA′

LABCA′ , ∇AA′
ζAA′ = g, ζAA′ |Σ = ◦

ζAA′ , (15)
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where
◦
ζAA′ is the solution of (14) obtained above. LetU be a causal neighbourhood [15] of

Σ . According to Theorem 2.1, this problem has a unique solutionζAA′ in U .
Next, consider the problem

hHBCA′C′ − 2Ψ̄B ′E′A′C′HBC
E′B ′ + 8ΛHBCA′C′

= −2∇A
(C′L|ABC|A′) + 2

3∇C′(BζC)A′ + 2
3∇A′(BζC)C′ ,

∇nHBCA′C′ |Σ = 2nA
(C′(∇̃|AB ′ ◦

HBC|A′)B ′ − L|ABC|A′) + 2
3ε|A(B

◦
ζC)|A′))|Σ,

HBCA′C′ |Σ = ◦
HBCA′C′ . (16)

These are the first equation of (12), the first equation of (9) and the third condition of (13).
Note that the RHS of all three equations contain only known quantities. Hence, this problem
is a Cauchy problem for a linear, diagonal, second-order hyperbolic system. According to
a theorem in [15,29] this problem has a unique solutionHBCA′C′ in U .

It now remains to prove that theHBCA′C′ found above satisfies the conditions

∇(A
B ′

HBC)A′B ′ = LABCA′ , ∇BB′
HABA′B ′ = ζAA′ .

In order to do that, we define

ξABCA′ = ∇A
B ′

HBCA′B ′ − LABCA′ + 2
3εA(BζC)A′ .

Eq. (9) now implies thatξABCA′ |Σ = 0. Because bothHBCA′C′ andζAA′ are constructed
so that Eq. (12) are satisfied, we have that∇A

C′ξABCA′ = 0. Because(∇̃A
C′ξABCA′)|Σ only

depends onξABCA′ |Σ , this gives us that

nA
C′∇nξABCA′ |Σ = −(∇̃A

C′ξABCA′)|Σ = 0.

Thus,

0 = nDC′
nA

C′∇nξABCA′ |Σ = 1
2εAD∇nξABCA′ |Σ = −1

2∇nξ
D

BCA′ .

Taking another derivative gives us

0= ∇D
C′∇A

C′ξABCA′ = −1
2hξDBCA′ + 2ΨD(B

AFξ|A|C)FA′ − 3ΛξDBCA′

−2Λξ(BC)DA′ − 2ΛεD(BξA
C)AA′ , (17)

because we assumed thatM is Einstein. Hence,ξABCA′ is a solution of the following problem:

hξDBCA′ − 4ΨD(B
AFξ|A|C)FA′ + 6ΛξDBCA′ + 4Λξ(BC)DA′ + 4ΛεD(BξA

C)AA′ = 0,

ξDBCA′ |Σ = 0, ∇nξDBCA′ |Σ = 0 (18)

This homogeneous problem has a unique solution inU according to [15]. Therefore, we
must have

ξABCA′ = 0

in U , which implies that

∇(A
B ′

HBC)A′B ′ = LABCA′ , ∇BB′
HABA′B ′ = ζAA′ .
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This proves thatHBCA′C′ satisfies all the conditions (13), which completes the existence
part of the theorem.

Uniqueness. Remember that
◦
ζAA′ was uniquely determined by the fourth condition of

(13) and the second equation of (9) and thatζAA′ was uniquely determined by
◦
ζAA′ , the

second condition of (13) and the second equation of (12). Also recall that this determined
the normal derivative ofHBCA′C′ on Σ uniquely and that this normal derivative together
with the third condition of (13) and the first equation of (12) determinedHBCA′C′ uniquely.
This establishes uniqueness. �

3.4. The tensor potential

It is tedious but straightforward to translate the above result into tensors. The con-
dition ΦABA′B ′ = 0 translates into the vanishing of the trace-free Ricci tensorR̃ab =
Rab − 1

4Rgab and as mentioned above,LABCA′ corresponds to a real tensorLabc such
that

Labc = L[ab]c, L[abc] = 0, Lab
b = 0.

We also note that a spinor fieldHABA′B ′ = H(AB)(A′B ′) corresponds to a complex, symmetric
and trace-free tensor fieldHab, i.e.,

Hab = H(ab), Ha
a = 0.

Theorem 3.3. Suppose M is an Einstein space–time(R̃ab = 0) and thatΣ ⊂ M is aC∞

space-like past-compact hypersurface with future directed unit normalna . Let a real tensor
field Labc having the above symmetries, and a complex function g be given. Furthermore,
let a complex function

◦
f and a complex tensor field

◦
Hab = ◦

H(ab) such that
◦
Ha

a = 0, both
defined only onΣ be given. Then, there exists a neighbourhood U ofΣ such that there
exists a unique complex tensor fieldHab satisfying the equations

Hab = H(ab), Ha
a = 0,

Labc = −∇[aHb]c − ∇[aH̄b]c − i∇∗
[aHb]c + i∇∗

[aH̄b]c + 1
3(gc[a∇dHb]d

+gc[a∇dH̄b]d + ig∗
c[a∇dHb]d − ig∗

c[a∇dH̄b]d),

∇a∇bHab = g, Hab|Σ = ◦
Hab, na∇bHab|Σ = ◦

f , (19)

on all of U.

By writing Hab = H 1
ab + iH 2

ab, whereH 1 andH 2 are real, we can simplify the second
of the above conditions somewhat

Labc = −2∇[aH
1
b]c + 2∇∗

[aH
2
b]c + 2

3(gc[a∇dH 1
b]d − g∗

c[a∇dH 2
b]d). (20)



284 F. Andersson, S.B. Edgar / Journal of Geometry and Physics 37 (2001) 273–290

4. Comparison with electromagnetic theory

4.1. Introduction

In this section, we consider electromagnetic theory in a curved space–time. Most of the
above results are applicable here too, and we will also find that due to the simple index
configuration of the electromagnetic spinor (ϕAB as compared toΨABCD) and also due to
Maxwell’s equations, certain simplifications will occur.

4.2. The electromagnetic field and its spinor potentials

First of all we remark that as in the rest of the paper all results in this section are local in
nature unless comments are made to the contrary.

Recall that the electromagnetic tensor (Maxwell tensor) is a 2-formFab = F[ab] . Maxwell’s
equations are

∇aFab = Jb, ∇[aFbc] = 0,

whereJb is the source current. The second of these equations together with Poincare’s
lemma gives us the existence of a (real) 1-formAa such that

Fab = ∇[aAb] .

Now, putα = ∇aAa (i.e.,α is analogous to the differential gauge in the above sections). If
α = 0, the electromagnetic potentialAa is said to be in Lorentz gauge.

To examine the gauge freedom inAa , supposeAa andÃa are two potentials ofFab in
the same differential gauge and putBa = Ãa − Aa . Then

∇[aBb] = 0, ∇aBa = 0. (21)

Thus, there exists a (real) scalar fieldG such thatBa = ∇aG and by the second condition,
thenhG = 0.

Conversely, take any scalar fieldG that satisfieshG = 0 and putBa = ∇aG. Then,Ba

satisfies Eq. (21) and thereforẽAa = Aa + Ba will be a potential ofFab in the same dif-
ferential gauge asAa . Hence, we have completely characterized the gauge transformations
that preserve the differential gauge.

Next, we turn to the spinor formulation. AsFab is antisymmetric, it can be written

Fab = ϕABεA′B ′ + ϕ̄A′B ′εAB

for some symmetric spinorϕAB. Maxwell’s equations can be shown to be

∇A′BϕAB = JAA′ ,

whereJAA′ is the hermitian spinor equivalent of the currentJa . If we apply Illge’s Theorem
2.2 toϕAB, we obtain the existence of acomplex1-formAAA′ such that

ϕAB = ∇(A
A′

AB)A′ . (22)
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Putting AAA′ = −1
2A1

AA′ + 1
2iA2

AA′ , whereAi
AA′ , i = 1, 2 are hermitian, this equation

becomes (in tensors) [18]

Fab = ∇[aA
1
b] + ∗∇[aA

2
b],

where∗ denotes the Hodge dual. It is shown in [18] that solutions of this equation with
A2

a = 0 exist if and only if∇[aFbc] = 0 (which is true if and only ifJAA′ is hermitian) in
agreement with Poincare’s lemma.

It is interesting to note that the existence of the potentialAa in electromagnetic theory
is usually presented as a consequence of the second of Maxwell’s equations via Poincare’s
lemma. However, we see that the existence of the (complex) potentialAAA′ is independent
of Maxwell’s equations; it is simply a consequence of Theorem 2.2. The role of Maxwell’s
equations is to ensure that this potential can be chosen hermitian.

Now, we can of course use the theorems in the earlier sections to find potentials of
AAA′ . From Theorem 2.2, we know that we can always find an asymmetric potentialHA′B ′

(however, whenAAA′ is divergence-free, i.e.,α = 0 it is shown in [18] that a symmetric
potential always exists, see also below) and from the complex conjugate of Theorem 2.2
(or 3.3), we can obtain an asymmetric potentialTAB. So, we have two potentials forAAA′

satisfying

AAA′ = ∇A′BTAB = ∇A
B ′

HA′B ′ .

It is easily seen that ifAAA′ is hermitian and ifTAB is a potential ofAAA′ , thenHA′B ′ = T̄A′B ′

is also a potential ofAAA′ .
It is to be noted that ifFab does not satisfy Maxwell’s equations then we cannot choose

the electromagnetic potentialAAA′ hermitian, and there is no simple relation between the
two potentialsTAB andHA′B ′ .

As before we can also obtain a wave equation forTAB. Decomposed into its symmetric
and antisymmetric parts it becomes

0 = hT(AB) − 2ΨAB
CDT(CD) + 8ΛT(AB) + 2ϕAB, 0 = hTA

A + 2α, (23)

highlighting a formal resemblance betweenTAB and the Hertz potential in flat space.
We can express the gauge freedom ofAAA′ in terms ofTAB. The result is thatAAA′ and

ÃAA′ = AAA′ + BAA′ are two potentials ofϕAB in the differential gaugeα if and only if

BAA′ = ∇A′BTAB,

whereTAB is a solution of

0 = hT(AB) − 2ΨAB
CDT(CD) + 8ΛT(AB), 0 = hTA

A. (24)

But we had already expressed the gauge freedom in terms of the scalarG for the Maxwell
case whenBAA′ is hermitian, so we might wonder what the link betweenTAB andG is. To
give a partial answer to this question, letΣ be as in Section 5 and suppose

BAA′ = ∇A′BTAB = ∇AA′G,
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whereTAB satisfies the first of Eq. (24) andG is an arbitrary real scalar field (so that the
gauge transformationBAA′ is allowed to change the differential gauge). It follows that

0 = ∇A′B(TAB + εABG).

By differentiating again, we obtain (SAB = T(AB), T = TA
A)

0 = hSAB − 2ΨAB
CDSCD + 8ΛSAB, 0 = h(T + 2G), (25)

and by evaluating onΣ , we get

∇nSAC|Σ = (−2nA′(C∇̃A′BSA)B + nA′(C∇̃A′
A)T )|Σ,

∇n(T + 2G)|Σ = 2nAA′ ∇̃A′BSAB|Σ. (26)

It easily follows that ifT |Σ = −2G|Σ and if nAA′ ∇̃A′BSAB|Σ = 0, thenT = −2G in a
neighbourhood ofΣ .

Finally, we will look a little closer at the case whenFab is a 2-form that satisfies
Maxwell’s equations. Poincare’s lemma (or [18]) then tells us that there exists a (her-
mitian) divergence-free potentialAa = AAA′ . Now, according to Illge [18] for anycomplex
divergence-free 1-formAAA′ there exists asymmetricspinorTAB such thatAAA′ = ∇A′BTAB.
Define the 2-formTab = TABεA′B ′ + T̄A′B ′εAB. The tensor equations relatingAa andTab

are then

∇aTab = 2 Re(Aa),
∗∇aTab = 2 Im(Aa).

As Aa was chosen hermitian, we obtain

∇aTab = 2Aa,
∗∇aTab = 0.

The second equation of these is equivalent to∇[aTbc] , i.e., Tab is a closed 2-form just
like Fab so Tab also has a hermitian, divergence-free potential and so on. Hence, we get
an infinite chain of potentials alternating between hermitian, divergence-free 1-forms and
closed hermitian 2-forms.

5. Discussion

The most important motivation for studying the general spinor potentials of the earlier
sections has been the Lanczos potential of the Weyl curvature spinor. The discussion of this
section will therefore deal mainly with those potentials and their ‘superpotentials’HABA′B ′

andTABCD from [6].
Due no doubt in part to the rather complicated tensor version (1) of its relationship to

the Weyl tensor, and also to various mistakes in some papers, the Lanczos potential has
failed to attract major attention, and there is perhaps still an air of uncertainty surrounding
it.

Although Bampi and Caviglia [7] identified the flaw in Lanczos’ original attempt to
prove its existence, the complicated nature of their own existence proof also helped to set
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the Lanczos potential apart. Maher and Zund [23] discovered the very simple and natural
spinor structure ofLABCA′ as early as 1968. This result attracted little interest however,
perhaps because of some misprints and ambiguities in this and subsequent papers.

Twenty years later, Illge’s work [18] highlighted and exploited the spinor representation,
and also discovered for the first time the remarkably simple wave equation for the Lanc-
zos potential of the Weyl spinor in vacuum space–times and Lanczos differential gauge.
(Although Lanczos had calculated a wave equation for the Lanczos potential of the Weyl
tensor in tensor notation, containing complicated non-linear terms obtained by everywhere
replacingCabcdwith the appropriate expression inLabc, it contained some mistakes, which
were repeated, or only partly corrected by others; no-one had suspected that these non-linear
terms were actually identically zero in four dimensions.) The relative simplicity of the Lanc-
zos spinor wave equation in the less ideal cases of non-vacuum, arbitrary differential gauge,
arbitraryWABCD (in particular it is linear) enabled Illge to use the wave equation in his
proof of existence of the Lanczos potential. More precisely he showed the equivalence of
the solution set of the wave equation subject to an initial value constraint, and the solution
set of the Weyl–Lanczos equation.

By applying the spinor results of Illge [18] and this paper to electromagnetic theory in
Section 4 we emphasized, as pointed out by Illge [18] that the existence of the electro-
magnetic potential is not dependent on the second of Maxwell’s equations, via Poincare’s
lemma, which is the way in which it is usually presented. The simplification of having a
hermitian potentialAAA′ can clearly not apply toLABCA′ or its potentialTABCD, however,
such a possibility may exist for the potentialHABA′B ′ of LABCA′ (for, at least, a significant
class of space–times), and this is one of the questions requiring further investigations. We
also saw that in the case of a hermitianAAA′ the two potentialsTAB andHA′B ′ were es-
sentially equivalent; whether there are any (less direct) links between the two potentials of
LABCA′ also requires further investigations.

The existence of a potential such asLABCA′ for ΨABCD is of course well known and thor-
oughly investigated in flat space in connection with the massless field equation; and indeed
a chain of Hertz-like potentials, including some analogous toTABCDandHABA′B ′ , have been
studied. Although Penrose [26] has studied these using spinor techniques, his results are
strictly for (conformally) flat space–times. InH-spaces (complex general relativity) [19]
the complex connection plays the role of a complex Lanczos potentialLABCA′ of one of the
Weyl spinors (recall that the other Weyl spinor is zero sinceH-spaces are always left-flat),
and this potential itselfalwayspermits a potentialHABA′B ′ . This H -potential is the basis
for constructing physics inH-spaces. This is part of our motivation for investigating, in
Section 5, the existence of anH -potential in real curved space. It is hoped, having now
shown that such a potential does exist in physically important curved spaces, that (at least
part of) the successful programme associated with the complexH -potential can be applied
to thisH -potential in real space–times.

A related motivation is that in earlier investigations of Lanczos potentials, the existence of
such anHABA′B ′ was not only an important aid to calculate the Lanczos potentialLABCA′ , but
the possibility of it having physical and geometrical significance has also been considered.
We summarize those cases below:
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• Torres del Castillo [27,28] has studied space–times admitting a normalized spinor dyad
(oA, ιA) in which

κ = σ = 0,

and in which the Ricci spinor satisfies

ΦABA′B ′oAoB = 0.

He found that in all such spaces there exists a Lanczos potentialLABCA′ of the Weyl
spinor such thatLABCA′ can be written

LABCA′ = ∇(A
B ′

HBC)A′B ′

for some completely symmetric spinorHABA′B ′ = QABoA′oB ′ (we remark that for the
caseρ 6= 0, Λ = constant, all such Lanczos- andH -potentials have been calculated [3]
using the GHP-formalism). By defining

ηab = gab − Hab,

whereHab is the symmetric, trace-free tensor equivalent ofHABA′B ′ Torres del Castillo
obtained a complex, conformally flat metricηab.

• Bergqvist and Ludvigsen [10] define a curvature-free connection in the Kerr space–time,
by

∇̂AA′ξB = ∇AA′ξB + 20C
B

AA′ξC,

where

ΓABCA′ = ∇(A
B ′

HB)CA′B ′ , (27)

andHABA′B ′ is hermitian and given by

HABA′B ′ = ρ + ρ̄

4ρ3
Ψ2oAoBoA′oB ′ , (28)

whereoA is a repeated principal spinor of the Weyl spinor. Subsequently, Bergqvist [9]
has shown thatΓ(ABC)A′ is a Lanczos potential in the Kerr space–time. This connection
has been used by Bergqvist and Ludvigsen [10] to construct quasi-local momentum in
the Kerr space–time.

• In [5], these results are generalized to Kerr–Schild space–times, i.e.,

gab = ηab + flalb,

whereηab is a flat metric,la is null andf is a real function. It is shown that providing
la is geodesic and shear-free (or if another more technical condition is fulfilled) then
Hab = flalb is a hermitianH -potential of a Lanczos potential of the Weyl spinor, that
also defines a curvature-free connection (see also [16]).
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• These results are further generalized in [2,3]. It is shown that in a class of spaces ad-
mitting a geodesic shear-free expanding null congruence (including all vacuum ones) an
H -potential of a Lanczos potential of the Weyl spinor such that it defines a completely
curvature-free connection, can always be found.

• In a recent paper López-Bonilla et al. [21] have found, for the Kerr space–time, an
explicit Lanczos potential of the Weyl spinor, given by a hermitianH -potential of the
type discussed in this paper, for the Kerr space–time. Note that thisH -potential is different
from the one found by Bergqvist and Ludvigsen [10].

• Novello and Velloso [24] have shown that for perfect fluid space–times that admit a
normalized time-like vector fieldua , uau

a = 1 which is shear-free and vorticity-free, so
that

∇aub = uau̇b + 1
3θhab,

whereu̇a = ub∇bua , hab = gab − uaub andθ is the expansion ofua , then the tensor

Labc = 2u̇[aub]uc + 2
3gc[au̇b] (29)

is a Lanczos potential of the Weyl spinor (the second term is to ensure thatLab
b = 0). It

is easy to confirm that when

Hab = uaub − 1
4gab = 3

4uaub − 1
4hab (30)

is substituted forH 1 (with H 2 = 0) in Eq. (20), we obtain precisely the Lanczos potential
(29).

We conclude with two comments. In some of the examples quoted above anH -potential
of a Lanczos potential of the Weyl spinor was found for some non-Einstein space–times;
it remains an open question if such a construction is possible for a significant class of
non-Einstein space–times. Earlier in this section, we commented on the possible signif-
icance of having a hermitianH -potential. Another open question is whether hermitian
superpotentials for the Weyl spinor can be found for a more general class of space–times.
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